香港迪士尼举办大型招聘会 提供600个职位空缺******
中新网香港2月2日电 (记者 戴小橦)香港迪士尼2日举办大型职业博览及招聘会,提供600个全职和兼职职位空缺,涵盖乐园和酒店的前线职位。
据了解,是次开放日设有香港迪士尼前线职位的现场招聘及面试、部门实地介绍、领袖及演艺人员分享等多项环节。多个主要部门包括餐饮、商品、娱乐事务及服装、保安、乐园服务、酒店及乐园营运等,分别在园内多个地点向参加者介绍相关业务运作,以及其职位空缺的工作前景。
香港迪士尼乐园度假区招聘、薪酬及福利总监郑家濂指出,随着特区政府逐步放宽“通关”措施,到访游客增加,预期未来几个月乐园人手需求亦会增加,乐园会继续观察“通关”后的客流量,视乎情况再增聘。
香港迪士尼乐园度假区行政总裁莫伟庭表示,香港迪士尼是疫后香港旅游业复苏的其中一个重要支柱,随着香港踏上复常之路,香港迪士尼对未来发展和旅游业复苏所带来的机遇感到无比兴奋。他指出,香港迪士尼早前已经接待约20团来自中国内地、新加坡、泰国及菲律宾等地的业界代表、传媒及KOL,他们都反应正面并表达了再次到访香港迪士尼的期盼,未来几个月亦将会有更多业界代表、传媒和旅客到访香港迪士尼。(完)
提速近10倍!基于深度学习的全基因组选择新方法来了****** 近日,中国农业科学院作物科学研究所、三亚南繁研究院大数据智能设计育种创新团队联合多家单位提出利用植物海量多组学数据进行全基因组预测的深度学习方法, 可以实现育种大数据的高效整合与利用,将助力深度学习在全基因组选择中的应用,为智能设计育种及平台构建提供有效工具。相关研究成果发表在《分子植物(Molecular Plant)》上。 全基因组选择作为新一代育种技术,通过构建预测模型,根据基因组估计育种值进行早期个体的预测和选择,从而缩短育种世代间隔,加快育种进程,节约成本,推动现代育种向精准化和高效化方向发展。 统计模型作为全基因组选择的核心,极大地影响了全基因组预测的准确度和效率。传统预测方法基于线性回归模型,难以捕捉基因型和表型间的复杂关系。 相较于传统模型,非线性模型(如深度网络神经)具备分析复杂非加性效应的能力,人工智能和深度学习算法为解决大数据分析和高性能并行运算等难题提供了新的契机,深度学习算法的优化将会提高全基因组选择的预测能力。 该研究团队以玉米、小麦和番茄3种作物的4种不同维度的群体数据为测试材料,通过创新深度学习算法框架开发了全基因组选择新方法。 与其他五种主流预测方法相比,该方法有以下优点: 可以利用多组学数据开展全基因组预测;算法设计中包含批归一化层、回调函数和校正线性激活函数等结构,可以有效降低模型错误率,提高运行速度;预测精度稳健,在小型数据集上的表现与目前主流预测模型相当,在大规模数据集上预测优势更加明显;计算时间与传统方法相近,比已有深度学习方法提速近10倍;超参数调整对用户更加友好。 该研究得到了国家重点研发计划、国家自然科学基金、海南崖州湾种子实验室和中国农业科学院科技创新工程等项目的支持。 学术支持 中国农业科学院作物科学研究所 记者 宋雅娟
(文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |